Mikroprosesor (Part 1)


Mikroprosesor adalah sebuah chip (IC) yang bekerja dengan program. Fungsi Mikroprosesor adalah sebagai pengontrol atau pengolah utama dalam suatu rangkaian elektronik. Mikroprosesor biasa disebut juga CPU (Central Processing Unit).


Cara kerja sebuah Mikroprosesor diarahkan oleh suatu program dalam kode-kode bahasa mesin yang telah dimasukkan terlebih dahulu ke dalam sebuah memori. Di dalam Mikroprosesor minimal terdiri dari rangkaian digital, register, pengolah logika aritmatika, rangkaian sekuensial.

Sejarah Mikroprosesor.
Th. 1946 : Komputer modern pertama dibuat di University of Pennsylvania USA yang disebut ENIAC (Electronics Numerical Integrator and Calculator.
ENIAC terdiri dari 17.000 tabung hampa, 500 mil kabel, berat > 30 ton, dapat menjalankan 100.000 operasi per detik, diprogram dengan mengatur jalur kabel pada rangkaiannya.
Th. 1948 : Transistor pertama dibuat di Bell Labs, USA.
Th. 1958 : IC (Integrated Circuit) pertama dibuat oleh Jack Kilby dari Texas Instrument, USA.
Penemuan IC ini mendorong pengembangan IC Digital (1960), dan mikroprosesor pertama oleh Intel (1971).
Mikroprosesor pertama di dunia adalah Intel 4004 merupakan prosesor 4-bit, Kebanyakan Kalkulator masih berbasis mikroprosesor 4-bit.
Th. 1971 : Intel mengeluarkan mikroprosesor 8-bit yaitu Intel 8008.
Th. 1973 : Intel memperkenalkan mikroprosesor 8-bit modern pertama Intel 8080 (10x lebih cepat dari 8008), dan diikuti Motorola MC6800.
Th. 1977 : Intel memperkenalkan 8085 yang merupakan mikroprosesor 8-bit terakhir yang dibuat Intel dengan frek.clock dan kecepatan lebih tinggi.
Perusahaan lain yang mampu menyaingi Intel 8085 adalah Zilog Corporation dengan Z80.
Th. 1978 : Intel mengeluarkan mikroprosesor 16-bit yaitu 8086, setahun kemudian mengeluarkan 8088 dengan kecepatan eksekusi dan memori lebih besar dari 8085, serta mulai digunakannya cache memori (sistem antrian yang mengatur pemberian instruksi sebelum menjalankannya).
Intel 8086/8088 disebut juga CISC (Complex Instruction Set Computer) karena jumlah dan kompleksitas instruksinya.
Th. 1981 : IBM membuat PC menggunakan mikroprosesor 8088 untuk menjalankan aplikasi seperti spreadsheet dan pengolah kata.
Th. 1983 : Intel mengeluarkan mikroprosesor 16-bit 80286, dengan kemampuan memori 16 MB.
Th. 1986 : Intel mengeluarkan mikroprosesor 32-bit pertama 80386, dengan kemampuan memori 4 GB.
Th. 1989 : Intel mengeluarkan mikroprosesor 32-bit 80486, dengan kemampuan memori 4 GB + 8K Cache.
Th. 1993 : Intel memperkenalkan mikroprosesor 32-bit Pentium I, Th. 1997 Pentium II,kemudian berturut-turut Pentium III dan Pentium 4 pada Th. 2000, dimana mulai digunakan teknologi memori RAMBUS menggantikan teknologi SDRAM.

Arsitektur Microprosessor

1. Arsitektur I/O Terisolasi
 Mikroprosesor dengan arsitektur I/O Terisolasi menggunakan disain pengalamatan atau pemetaan I/O terpisah atau terisolasi dengan pengalamatan atau pemetaan memori. Pengalamatan I/O menggunakan sebagian dari jumlah saluran alamat (Address Buss) sedangkan pengalamatan memori menggunakan semua saluran alamat (Address Buss). Metode I/O terisolasi menggunakan akumulator pada CPU untuk menerima informasi dari I/O atau mengeluarkan informasi ke bus I/O selama operasi Input Output. Tidak ada Register lain selain akumulator yang terpakai untuk akses I/O. Metode I/O Terisolasi disebut juga dengan I/O akumulator. Konsep ini memiliki pengaruh penting pada program komputer yaitu:
 Instruksi yang digunakan hanya dua kode operasi yaitu IN dan OUT
 Informasi/data yang ada pada akumulator harus dialihkan pada suatu lokasi
penyimpanan sementara sebelum ada operasi I/O berikutnya
 Perlu ada tambahan instruksi pada program pengalihan data/informasi pada
Akumulator.

Keuntungan metode I/O terisolasi:

 Komputer dapat mengalihkan informasi/data ke atau dari CPU tanpa
menggunakan memori. Alamat atau lokasi memori untuk rangkaian memori bukan untuk operasi I/O
 Lokasi memori tidak terkurangi oleh sel-sel I/O Instruksi I/O lebih pendek
sehingga dapat dengan mudah dibedakan dari instruksi memori
 Pengalamatan I/O menjadi lebih pendek dan perangkat keras untuk pengkodean alamat lebih sederhana.

Kerugian metode I/O terisolasi:
 Lebih banyak menggunakan penyemat pengendalian pada Mikroprosesornya.Mikroprosesor buatan Intel dan Mikroprosesor buatan Zilog menggunakan arsitektur I/O Terisolasi.

2. Arsitektur I/O Terpetakan dalam Memori
 Mikroprosesor dengan arsitektur I/O terpetakan dalam memori menyatukan sel-sel I/O dalam pengalamatan yang bersama dengan sel-sel memori. I/O yang terpetakan dalam memori menunjukkan penggunaan instruksi tipe memori untuk mengakses alat-alat I/O. I/O yang dipetakan dalam memori memungkinkan CPU menggunakan instruksi yang sama untuk alih memori seperti yang digunakan untuk alih I/O. Sebuah pintu I/O diperlakukan seperti sebuah lokasi memori. Keuntungan sistim ini adalah instruksi yang dipakai untuk pembacaan dan penulisan memori dapat digunakan untuk memasukkan dan mengeluarkan data pada I/O.
Kerugiannya pertama tiap satu pintu I/O mengurangi satu lokasi memori yang tersedia. Kedua alamat lokasi I/O memerlukan 16 bit saluran. Ketiga instruksi I/O yang dipetakan dalam memori lebih lama dari instruksi I/O terisolasi. 

3. Arsitektur Harvard
 Arsitektur Harvard menggunakan disain yang hampir sama dengan arsitektur I/O terisolasi. Perbedaannya pada arsitektur harvard antara memori program dan memori data dipisahkan atau diisolasi. Pemisahan antara memori program dan memori data menggunakan perintah akses memori yang berbeda.Harvard arsitektur ditinjau dari kemampuan jumlah memori lebih menguntungkan.
Pada mikroprosesor yang berarsitektur Harvard, overlaping pada saat menjalankan instruksi bisa terjadi. Satu instruksi biasanya dieksekusi dengan urutan fetch (membaca instruksi ), decode (pengalamatan), read (membaca data), execute (eksekusi) dan write (penulisan data) jika perlu. Secara garis besar ada dua hal yang dilakukan prosesor yaitu fetching atau membaca perintah yang ada di memori program (ROM) dan kemudian diikuti oleh executing berupa read/write dari/ke memori data (RAM).  Karena pengalamatan ROM dan RAM yang terpisah, ini memungkinkan CPU untuk melakukan overlaping pada saat  menjalankan instruksi. Dengan cara ini dua instruksi yang beurutan dapat dijalankan pada saat yang hampir bersamaan. Yaitu, pada saat CPU melakukan tahap executing instruksi yang pertama, CPU sudah dapat menjalankan fetching instruksi yang ke-dua dan seterusnya. Ini yang disebut dengan sistem pipeline, sehingga program keseluruhan dapat dijalankan relatif lebih cepat.

4. Arsitektur Von Neumann
Keuntungan lain dengan arsitektur Von Neumann adalah pada fleksibilitas pengalamatan program dan data. Biasanya program selalu ada di ROM dan data selalu ada di RAM. Arsitektur Von Neumann memungkinkan prosesor untuk menjalankan program yang ada didalam memori data (RAM). Misalnya pada saat power on, dibuat program inisialisasi yang mengisi byte di dalam RAM. Data di dalam RAM ini pada gilirannya nanti akan dijalankan sebagai program. Sebaliknya data juga dapat disimpan di dalam memori program (ROM). Contohnya adalah data look-up-table yang ditaruh di ROM. Data ini ditempatkan di ROM agar tidak hilang pada saat catu daya mati. Pada mikroprosesor  Von Neumann, instruksi yang membaca data look-up-table atau program pengambilan data di ROM,  adalah instruksi pengalamatan biasa. Sebagai contoh, pada mikrokontroler 8bit Motorola 68HC11 program itu ditulis dengan :
LDAA 00 ; A <– 00
Program ini adalah instruksi untuk mengisi accumulator A dengan data yang ada di alamat 4000 (ROM).
Instruksi tersebut singkat hanya perlu satu baris saja. Pada prinsipnya, kode biner yang ada di ROM atau di RAM bisa berupa program dan bisa juga berupa data.
Arsitektur Von Neumann bukan tidak punya kelemahan, diantaranya adalah bus tunggalnya itu sendiri. Sehingga instruksi untuk mengakses program dan data harus dijalankan secara sekuensial dan  tidak bisa dilakukan overlaping untuk menjalankan dua isntruksi yang berurutan. Selain itu bandwidth program harus sama dengan banwitdh data. Jika memori data adalah 8 bits maka program juga harus 8 bits. Satu instruksi biasanya terdiri dari opcode (instruksinya sendiri) dan diikuti dengan operand (alamat atau data). Karena memori program terbatas hanya 8 bits, maka instruksi yang panjang harus dilakukan dengan 2 atau 3 bytes. Misalnya byte pertama adalah opcode dan byte berikutnya adalah operand. Secara umum  prosesor Von Neumann membutuhkan jumlah clock CPI (Clock per Instruction) yang relatif lebih banyak dan walhasil eksekusi instruksi dapat menjadi relatif lebih lama.

Dikutip dari berbagai sumber.


Forum Elektronika Indonesia

Post a Comment

Previous Post Next Post